HELICS
Description:
Energy systems and their associated information and communication technology systems are becoming increasingly intertwined. As a result, effectively designing, analyzing, and implementing modern energy systems increasingly relies on advanced modeling that simultaneously captures both the cyber and physical domains in combined simulations. The Hierarchical Engine for Large-scale Infrastructure Co-Simulation (HELICS) is a layered, high-performance, co-simulation framework that builds on the collective experience of multiple national labs. It is designed to increase scalability and portability in modeling advanced features of highly integrated power system and cyber-physical energy systems
Acknowledgement:
Produced under funding from the U.S. Department of Energy
Disclaimer:
This material was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the United States Department of Energy, nor Battelle, nor any of their employees, nor any jurisdiction or organization that has cooperated in the development of these materials, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness or any information, apparatus, product, software, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC05-76RL01830